Course code	MK102				
Course title	PHYSICAL ORGANIC AND COMPUTATIO NAL CHEMISTRY				
General information					
Study programme	Graduate study "Medical chemistry"		Academ	Academic	
			year		
Lecturer	Doc. Dr. Sc. Željko Svedružić				
Status		Required	Elective		
ECTS system		-	•	6	
Course chicatives					

Course objectives

To acquaint students with basic principles of physical organic and computational chemistry and its application in studying relation between physico-chemical and biological properties of active components of drugs.

Course description

- basic principles of physical organic chemistry
- organic reaction mechanisms and the methods for their investigation
- influence of structural and electronic factors on properties of molecules and their reactivity
- acids and bases and their application in catalysis of organic reactions
- introduction to computational chemistry (molecular mechanics, quantum mechanics, molecular dynamics)
- brief overview of computational chemistry methods
- application to problems of physical organic chemistry: molecular properties and reaction mechanisms

Learning outcomes

Students will be qualified to competently apply physical-organic and computational chemistry concepts in design and synthesis of novel potential drugs.